
 Int. J. of Comp. & Info. Tech., (2016) 4(3): 71-78.

71

ISBN: 2345-3877
www.ijocit.org
Volume 4, Issue 3

Review Paper__

Detection of Suspicious PDF Document-
Embedded Code

Er. Gurjot Singh 1*

Received: 13 Jun 2016
Accepted: 19 Aug 2016

Copyright © The Author(s). All Rights Reserved.

Abstract
In this era of Internet and information technology, our data does not remain secure; our computer systems are
not fully secured from critical attacks as information is lying in public networks. E-mail has become increasingly
popular and virus spreading via email is also increasing. The PDF documents, EXE programs that are attached
as e-mail attachment can spread viruses from one system to another computer system. PDF documents are
popularly used for reading or sharing purposes because of its portability, easiness, and reliably independently of
the environment in which they were created and the attackers are using malicious PDF documents to harm
computer security in the present era. Advance antivirus is not proving effective against this kind of threat. In this
paper, I opted different techniques to detect the embedded suspicious code in the PDF document and also
analyzed the file structure, document structure and objects. I applied peepdf and pdf-parser, the pdf document
tools to analyze the viruses and embedded code in malicious pdf documents.

Keywords: Malicious Pdf Document, Virus, Malware Analysis, Pdf, and Pdf-Parser.

Citation: Singh, E. G. (2016). Detection of Suspicious PDF Document- Embedded Code, Int. J. of
Comp. & Info. Tech. (IJOCIT), 4(3): 71-78.

1

*

Department of Computer Science & IT, Malwa College, Samrala, Punjab, India
Corresponding Author: gs.genconian@gmail.com

Singh, E. G.

72

1. Introduction

In recent years, the use of Portable Document Format
(PDF) file was increasing very fast especially since
most of researchers share, exchange and publish their
works by using PDF as a medium. These researchers
has increased the range of PDF use from research
field to finalized document such as meeting minutes,
proposals, electronic books and achieve document
are in PDF [1, 2]. The reason behind PDF
Document’s popularity is its reliability and
independent of the environment in which they were
created. Due to extreme attention and various
advantages that PDF document provides, they are
now become the main medium for the attacker and
malware writers for spreading evil contents.
Attackers start to target any programs that become
popular enough to dominate, as this would raise the
number of potential victims. The dominant programs
may include software like PDF viewers, certain web
browsers, Adobe Flash player, etc [3].

Form few years ago, the malware authors use
PDF files to deliver malware in machines as the
executables files are blocked to deliver as e-mail
attachments. Not only executable, but also non-
executables can be made malicious. Once the
vulnerability is found inside a program, attackers try
to utilize this vulnerability in order to execute
malicious code on the victim's computer [3]. A
successful exploitation of the program's vulnerability
can result in the host computer getting infected with
a malicious program.

Attackers have also become smarter and many
countermeasures established by software houses such
as Adobe are now bypassed. The malware authors
exploit vulnerabilities in Adobe reader software that
can execute arbitrary code on particular machines.
The PDF language depends on PostScript language
[1]. The popular things to do with malicious PDF
files are to download the backdoors from command
and control servers and then execute them. Some
files have the ability to steal critical information
from the victim`s machine.

Problem: In today`s era, majority of
organizations and other authorized authorities opt
PDF documents to exchange their critical
information among themselves so relies on it is a
great weakness as the attackers change the structure
of that PDF files and add malicious contents into
them. When the victims open that malicious PDF
document then that malicious code is being activated
and spoiled the system of that particular victim. So it
is a great need to first analyze the PDF documents
for malicious code if any present in it or not.

2. Structure of PDF Document

2.1 PDF file’s Contents

A PDF file consists of the mainly four parts that are
described as follow:

Header

The header of file specifies the PDF version to which
the file conforms. It has one line which is mandatory
but can also have the second comment lines which
include a sequence of non-Printable characters [5, 9].

Body

The next part of structure is body which has objects.
Objects of pdf file include images, text streams, and
multimedia files. The body section contains all the
data which is being shown by the user.

Cross-reference table

The third section called Cross-reference table
contains the exact address of all the objects in the
PDF document i.e. the reference to all the objects in
the file as shown in fig 1. The principle of a cross
reference table is that it permits random access to
objects in the file. The location of object is defined
by a byte offset and offset tells the number of bytes
between the start of the document and the start of the
object description. The objects in the Cross-reference
table contain ‘in use’ or ‘free’ objects. The ‘Free’
objects is obsolete and should not be used. But it can
be reactivated.

Trailer

Last section is Trailer which placed at the end of the
PDF file. This is generally opted to store the location
of the cross-reference table and point to the root
object. It basically tells how the applications reading
the PDF document should find the cross reference
table [9].

Figure 1. Structure of PDF document

 Int. J. of Comp. & Info. Tech., (2016) 4(3): 71-78.

73

2.2. PDF Objects

Objects, are the basic building block of PDF file, are
divided into two categories these are direct and
indirect categories. Direct objects are just “inline
values”. For example: /Filter /Flate Decode. Here the
key is Filter with a direct name value of Flate
Decode. Indirect objects are referred by other objects
and they have an object ID and a generation number.
For example: /Contents 2 0 R. The key is Contents
and 2 0 R is an indirect reference to a contents
stream or a contents array. Basically a PDF
document has eight (8) types of objects called
“CosObjects” [6].

Boolean objects

Boolean objects are identified by only two values
(‘true’ and ‘false’.)

Numbers

Numbers have two categories in PDF these are
integer and real. Integers may have signed integers or
unsigned integers. Real can be in decimal format.

Strings objects

String objects are stored using literals and are
specified using parentheses ‘(’ and ‘)’ or if they
include hexadecimal numbers then these are
enclosed in angle brackets ‘<’ and ‘>’ as a sequence.
For Example: (Testing), <1A3D5C>.

Names objects

A name is a uniquely defined by sequence of
characters, which must be preceded by a slash (/).
Whitespace and certain delimiter characters cannot
be used within names, but these limitations can be
bypassed by representing such characters using their
corresponding hexadecimal code.

Array objects

An array is a one-dimensional collection of
heterogeneous objects arranged sequentially i.e. an
array may be made up of any combination of object
types. Arrays are always enclosed in square brackets.
For example: [0 0 612 792].

Dictionaries objects

A dictionary works as a lookup table in which entries
are specified as key and / value pairs. In each entry,
first value is defined as key and second is pair. A
dictionary is represented by two left angle brackets

(<<), followed by a sequence of key–value pairs,
followed by two right angle brackets (>>). For
example:

<< /Type /Example /Key2 12 /Key3 (a string) >>

Stream objects

This is a special dictionary object between the stream
and endstream. It stores both, the data and dictionary
information.

It contains stream data, such as images, script
code, text, and compressed it by using the special
filters [8].

Null object

Another category of object which is also valid in
PDF is NULL Object and is represented by a
keyword NULL [17].

2.3. Document Structure

The document structure describes how the objects
are arranged within the body of a PDF file and how
the several parts of the document are represented by
using these objects.

The description of PDF file can be given by the
hierarchy of the objects contained in the body.
Objects which are mostly used in PDF document are
dictionaries. The file usually is dictionaries [5, 18].

Catalog

The Catalog is the first parent node in the PDF
document i.e. root node, and it control the whole
PDF files. “The Catalog is a dictionary that is the
root node of specific document” [5]. This section is
used for referencing other objects (the tree of pages
contained in the document, objects representing the
document’s outline, the document’s article threads,
and the list of named destinations) which describes
the document’s contents. It also has information
regarding how the document will be displayed on the
screen.

Pages

The pages of PDF document are only accessible
through a tree called page tree which defines all the
pages in document and also the ordering of pages
[5]. A document containing thousands of pages can
be easily opened by using page tree. This tree
contains nodes which represent pages of document,
pages are of two types: intermediate and leaf nodes.
Intermediate nodes are also called page tree nodes,
whereas the leaf nodes are called page objects. The

Singh, E. G.

74

simplest page tree structure can consist of a single
page tree node that references the entire page object
directly (so the entire page objects are leafs). Each
page of the tree has two properties of its own, like
the Image able content, Thumbnail and Annotation.

Thumbnails

PDF documents include thumbnails of its pages
which is not required. It uses thumb values as the
page objects and it does not has type, subtype and
name key.[9] Annotations: Annotations are other
objector objects which are connected with a page but
are separate from the page description itself.
Annotations have various types like: Text notes,
Hypertext links moves and sounds [9].

Outline tree

The Outline tree is similar to the design of the
document. It holds the relationship between the
structure of this document and the parent’s nodes and
the child nodes. Outline allows a user to access
views of a document by name. Outline provides a
new view based on the destination description with
activation of an outline entry, a link annotation, also
called a bookmark. It is accessed from the Outlines
key in the Catalog object [5, 9].

Article threads

A PDF document may include one or more article
threads. Each thread has its name and elements User
can select any pages of which pages he/she want to
read, instead of from one page to next page.

 Named Destinations

A destination can be specified in a document
when we use an annotation or outline entry. The
destinations include a page, location of page display
on window. It can be described explicitly by arrays
or implicitly. A destination may be represented
explicitly as an array or implicitly by using a name
or a string .Both of string and a name are used as
named destinations [7]. These are effectively useful
when the destination is in another file [7, 9].

3. Security Analysis

There are numerous ways for embedding data within
a PDF document. Although the content stream may
refer to them through annotations, embedded objects
are not part of the document’s content stream. It is
possible to embed the links, movies, sounds or file
attachments through the annotation. It is also
possible to embed JavaScript code [9].

3.1. Malicious techniques used in PDF file

Embedding application or files

The PDF format allows embedding of files in to
documents, such as flash application, font
application or JavaScript; they also are accessible
from the PDF. This feature also used by malware
operators, for example disguise malicious file and
additional actions. It means that when user opening
the PDF file, the Adobe Reader can also show the
flash application directly or any type of file can be
embedded; it is also possible to embed viruses,
worms and other malicious code.

3.2. Exploitation of Vulnerabilities

This means that attackers execute shell code with
privileges of reader’s process. PDF exploits contain
two parts:

1. JavaScript-based
2. non-JavaScript-based also called Flash-based.

JavaScript-based method is more familiar and
popular, because JavaScript-based PDF malware is
usually text only, it is easier to pass the security
control.

Flash-based is embedding the flash files in the PDF
file. PDF provides several ways for inclusion of
JavaScript code. These mechanisms are important for
the realization of interactive features, such as forms,
dynamic content or 3D rendering [6].

There are basically two types of JavaScript code
that can be used: one is that, along with the code to
exploit the vulnerability, includes the payload used
for the attack, and other one relies on other objects in
the file or external malicious [4].

4. Suspicious PDF Document Analysis tools

As the academic tools specifically related to PDF
security are not much more. Most of the available
tools detect many types of malware at the same time,
and some include PDF as well.

4.1. CWSandbox

This tool has represented an important improvement
in malware analysis. CWSandbox[11] sophisticated
platform is able to extract the dynamic behaviour of
a computer system once a certain (e.g. suspicious)
file is opened and executed. Files are executed in a
controlled (virtual) environment and a detailed report
is generated for raised operating system events. This

 Int. J. of Comp. & Info. Tech., (2016) 4(3): 71-78.

75

is unable to give a conclusion that a file is malicious
or not, but the report which it generates can be used
for generating a set of features for automatic
classification manual analysis or manual analysis.

4.2. Wepawet

A tool which is specifically planned to detect PDF
files is called Wepawet[12,15,16] .It is a an online
malware detection system which searches for
malicious PDF files and URL. It extends
CWSandbox approach by adding a features
extraction and classification system. It is a tool based
on machine learning which concentrates on
JavaScript attacks: it extracts, classifies Javascript
code, deobfuscates within PDF files. It tool analyses
specific commands which are associated to malicious
files, also the order in which those commands are
executed. It employs a Bayesian classifier, which is
advantageous for the purposes of the analysis.

4.3. Nozzle

It is a tool which is developed to detect another
serious attack called Heap Spraying attacks [10]. Its
basic purpose is not to detect malicious PDF files,
but it can be a very helpful resource, because many
PDF files implement HS attacks.

4.4. MDScan

It is a most recent and advanced tool which was
purposely designed to identify malicious Javascript
code within a PDF file [13]. It implements a hybrid
approach: in order to retrieve Javascript code it scans
the PDF document i.e. it finds the objects related to
Javascript routines i.e. static part, and after that the
searched code is executed the code using a Javascript
interpreter i.e.dynamic part. There is difference
between Wepawet and MDScan in classifying the
malware files. MDScan examines the part of the
memory in which the Javascript routines are written,
and heuristics are adopted to conclude whether or not
the code is malicious.

4.5. PJScan

This tool is developed by Laskov and Srndi´c, and it
extracts the features which are helpful for the
classification from the Javascript code embedded in
the PDF file, using a static N-gram analysis. After
extracting features it uses a one-class SVM to
classify the files. It only examines files that
haveembedded Javascript code [14, 20].

4.6. PDF Scrutinizer

PDF Scrutinizer is a PDF analyzer in order to
classify PDF documents by using static and dynamic

detecting. PDF Scrutinizer focuses on JavaScript-
based attacks, and also suitable to the non-
JavaScript-based documents. It not only displays the
resulting classification, but also furnishes further
information on the reasons of the classification.

The main function of PDF Scrutinizer is dividing
PDF documents into three parts, parsing, and
extraction of actions and execution of actions.

1. Parsing: In this part loading and parsing the
documents performed. Objects of PDF are
analyzed and stored in the PDFbox to pursue
steps and access them. Here parsing in PDF
Scruitnizer try to extract PDF objects at all cost
which is not be limited to the PDF specification

2. Extraction of actions: Like common PDF reader
PDF Scrutinizer looks for the JavaScript action. If
the /OpenAction command is used, then the
document catalog the dictionary, store a reference
to the /Name array and scanned for include
JavaScript action. When all the action has been
collected, then save it for later analysis and
processed.

3. Execution of actions: The code extracted in
above step is executed in a modified JavaScript
engine, where the parts of the acrobat for
JavaScript API are emulated. Because in this way
they are able to return the correct values, this is
the malicious functionality. Execution the code
insures the action is good or bad. Then
classifications malicious, suspicious and benign
documents [9].

4.7. PDF Tools

It is a toolkit which helps in our understanding of the
PDF analysis process. This toolkit consists of
pdfid.py and pdf-parser.py. Pdfid.py is used for
quickly scanning PDF for malicious objects and pdf-
parser.py is used for examine their contents.

4.8. PDF Stream Dumper

PDF stream Dumper is robust Windows program
that merges a number of PDF analysis tools under a
unified GUI. With this Dumper Programs it becomes
possible to explore PDF contents, decode object
contents, deobfuscate JavaScript, examine shellcode,
etc.

4.9. Jsunpack-n

It’s a command-line tool that analyzes malicious
websites by emulating browser. It supports numerous
other features, but one special tool includes the
pdf.py script for extracting JavaScript embedded in
PDF files.

Singh, E. G.

76

4.10. Peepdf

Another interactive command-line tool called Peepdf
which allows users to explore and analyze contents
of PDF files. This is used for analyzing object
contents, examining the file’s structure as well as
decoding embedded JavaScript and shellcode.
Peepdf is a Python tool to explore PDF files in order
to find out if the file can be harmful or not. The aim
of this tool is to provide all the necessary
components that a security researcher could need in a
PDF analysis without using 3 or 4 tools to make all
the tasks. With peepdf it is possible to see all the
objects in the document showing the suspicious
elements, it supports all the most commonly used
filters and encodings; it can parse different versions
of a file, object streams and encrypted files. With the
installation of PyV8 and Pylibemu it provides
Javascript and shell code analysis wrappers too.
Apart of this it is able to create new PDF files and
obfuscate existing ones. The main functionalities of
peepdf are:

Analyze the different aspects like:

Decoding: hexadecimal, octal, name objects,
references in objects and where an object is
referenced, strings search (including streams), their
physical structure (offsets) and logical tree structure,
metadata, modifications between versions
(changelog), compressed objects (object streams),
analysis and modification of Javascript (PyV8):

Unescape, replace, join and shell-code analysis
(Libemu python wrapper, pylibemu), variables (set
command). It also Extract old versions of the
document, objects, Javascript code, shell-codes (>,
>>, $>, $>>) and checking hashes on VirusTotal.

4.11. Origami

It is a ruby framework for creating PDF files, parsing
and analyzing. it carries a the pdfscan.rb script to
scan the PDF for malicious objects in addition to
providing programmers with the strength to automate
PDF interactions, and for extracting Javascript
embedded in a file extractjs.rb is used .

4.12. MalObjClass

Another Framework which builds an object Called
JSON object which represents PDF files
components. It permits programmers to examine,
decode and easily parse PDF Objects .It also
encompasses a feature which is used to scan file with
VirusTotal.

5. Analysis and Discussion

For experimentation on malicious PDF
document, I first use Adobe PDF Escape Exe social
engineering module in metasploit framework on
linux operating system to create the suspicious PDF
file and then execute the malicious Pdf attack.
Almost every user has Adobe Acrobat application in
their systems. When the victim accesses a particular
suspicious PDF document that the attacker transmits
to him using e-mail attachments or some other
methods, then all of its credentials (victim
credentials) are directed to the attackers system using
reverse Tcp handler module that connects the
victim`s system to the attackers system. After that, I
applied forensic analysis tools i.e. peepdf and pdf-
parser to analyze that malicious code in suspicious
PDF document:

5.1. Peepdf:

Attackers continue to use malicious PDF files as part
of targeted attacks and mass-scale client-side
exploitation. Peepdf is an excellent addition to the
PDF analysis toolkit for examining and decoding
suspicious PDFs. The peepdf tool is written in
Python. It especially operates in its interactive mode
that leads to the tool’s shell that allows you to
navigate the PDF file’s structure and explore its
contents. For experiment with this, open peepdf tool.

Examining a PDF File for Suspicious
Characteristics

You can scan the PDF file by using the “peepdf
filename.pdf” command to obtain critical information
regarding the suspicious PDF file.

Figure 2. Analyze malicious PDF file with Peepdf

 Int. J. of Comp. & Info. Tech., (2016) 4(3): 71-78.

77

The above figure 2, describes the information
about the malicious PDF file i.e. the malicious
elements and the actions that are perform by the
suspicious PDF file, hashing function that is used,
the objects present in that particular file and any kind
of error that are present in the suspicious PDF file.
The (– I) mode present in the command describes the
interactive mode.

Pdf- Parser

This tool will parse a PDF document to identify the
fundamental elements used in the analyzed file.

Figure 3. Debugg the malicious PDF file

The above figure 3 shows the full description of
malicious PDF file i.e. number of objects (obj),
catalog, pages, open actions present in the suspicious
pdf file. The (-D) mode present in the command
debugs the malicious PDF file.

Figure 4. Embedded code in malicious PDF

The above figure 4 describes the malicious
embedded .exe in the PDF document. The action
(cmd.exe) that is execute when the malicious PDF
file is opened by the clients. The description of
cmd.exe file is shown in fig. 4.

Figure 5. Hash information of PDF file

The above figure 5 shows the hashing information
about the malicious PDF file. The (-H) mode present in
the command fetches the hash information of the
particular file. There are other modes also that are used
for other purposes.

6. Conclusion

At present, the malicious PDF files are serious threat
that requires effective and robust detection strategies.
The JavaScript is basically used to create the
malicious scripts as attackers have deep knowledge
about the JavaScript language. The effective tools
that analyze malicious PDF files are quite modest
and affected by the application of simple obfuscation
techniques. These tools give information about the
malicious contents that are present in the suspicious
PDF files. In this paper, I implied peepdf and pdf-
parser tools that effectively analyze the malicious
PDF document i.e. the malicious action and their
description and also the objects that are present in
that particular malicious document.

Singh, E. G.

78

References

[1] Azuan Ahmad, Bharanidharan Shanmugam, Norbik Bashah

Idris, Ganthan Nayarana Samy, and Sameer Hasan
AlBakri, “Forensic Analysis Tool for Malicious Pdf Files
And Shellcode Analysis”, International Conference on
Emerging Trends in Engineering and Technology, Dec. 7-
8, 2013, Patong Beach, Phuket (Thailand).

[2] Stevens D., “Malicious PDF documents explained. Security
& Privacy”, IEEE, 2011. 9(1): p. 80-82.

[3] Ahmad Bazzi1 and Yoshikuni Onozato, “Automatic
Detection of Malicious PDF Files Using Dynamic
Analysis”,
http://www.jsst.jp/e/JSST2013/extended_abstract/pdf/Paper
%2056.pdf.

[4] C. Smutz and A. Stavrou, “Malicious pdf detection using
metadata and structural features”, In Proceedings of the
28th Annual Computer Security Applications Conference,
ACSAC ’12, 2012.

[5] Tim Bienz, Richard Cohn, and James R.meehan. “Portable
Document Format Reference Manual” Adobe Systems
Incorporated. November 12, 1996.

[6] Pavel Laskov and Nedim Šrndic. “Static detection of
malicious JavaScript-bearing PDF documents”. ACSAC’
11 Proceedings of the 27th Annual Computer Security
Applications Conference.

[7] Internet Security Threat Reports. 2011 Trends. Symantec,
April 2012.

[8] Davide Maiorca, Igino Corona, Giorgio Giacinto. “Looking
at the bag is not enough to find the bomb: an evasion of
structural methods for malicious PDF files detection”,

Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, Pages
119-130.

[9] Dai Haobing, “Malicious PDF Document Analysis”,
Faculty of Engineering and Sustainable Development
University of Gävle S-801 76 Gävle, Sweden.

[10] Ratanaworabhan, P., Livshits, B. and Zorn, B.: NOZZLE:
A Defense Against Heapspraying Code Injection Attacks.
In: SSYM 2009 Proceedings of the 18th Conference on
USENIX Security Symposium (2009)

[11] Willems, C., Holz, T. and Freiling, F., “Toward Automated
Dynamic Malware Analysis Using CWSandbox”, Journal
IEEE Security and Privacy Archive 5(2) (2007)

[12] Cova, M., Kruegel, C. and Vigna, G., “Detection and
Analysis of Drive-by-Downloads Attacks and Malicious
Javascript Code”, In: Proceedings of International World
Wide Web Conference, (2010)

[13] Tzermias, Z., Sykiotakis, G., Polychronakis, M. and
Markatos, E.P.: Combining Static and Dynamic Analysis
for the Detection of Malicious Documents. In: EUROSEC
2011 Proceedings of the Fourth European Workshop on
System Security (2011)

[14] Laskov, P. and ˇSrndi´c, N.: Static Detection of Malicious
JavaScript-Bearing PDF Documents. In: Annual Computer
Security Applications Conference (2011).

[15] Wepawet, http://wepawet.iseclab.org/.
[16] Davide Maiorca, Giorgio Giacinto, and Igino Corona, “A

Pattern Recognition System for Malicious PDF Files
Detection”, pp. 510–524, 2012, Springer-Verlag Berlin
Heidelberg 2012.

[17] http://labs.appligent.com/pdfblog/pdf-object-types/
[18] http://resources.infosecinstitute.com/pdf-file-format-basic-

structure/.

